A viral CTL escape mutation leading to immunoglobulin-like transcript 4–mediated functional inhibition of myelomonocytic cells
نویسندگان
چکیده
Viral mutational escape can reduce or abrogate recognition by the T cell receptor (TCR) of virus-specific CD8+ T cells. However, very little is known about the impact of cytotoxic T lymphocyte (CTL) epitope mutations on interactions between peptide-major histocompatibility complex (MHC) class I complexes and MHC class I receptors expressed on other cell types. Here, we analyzed a variant of the immunodominant human leukocyte antigen (HLA)-B2705-restricted HIV-1 Gag KK10 epitope (KRWIILGLNK) with an L to M amino acid substitution at position 6 (L6M), which arises as a CTL escape variant after primary infection but is sufficiently immunogenic to elicit a secondary, de novo HIV-1-specific CD8+ T cell response with an alternative TCR repertoire in chronic infection. In addition to altering recognition by HIV-1-specific CD8+ T cells, the HLA-B2705-KK10 L6M complex also exhibits substantially increased binding to the immunoglobulin-like transcript (ILT) receptor 4, an inhibitory MHC class I-specific receptor expressed on myelomonocytic cells. Binding of the B2705-KK10 L6M complex to ILT4 leads to a tolerogenic phenotype of myelomonocytic cells with lower surface expression of dendritic cell (DC) maturation markers and co-stimulatory molecules. These data suggest a link between CTL-driven mutational escape, altered recognition by innate MHC class I receptors on myelomonocytic cells, and functional impairment of DCs, and thus provide important new insight into biological consequences of viral sequence diversification.
منابع مشابه
Mutational Escape in HIV-1 CTL Epitopes Leads to Increased Binding to Inhibitory Myelomonocytic MHC Class I Receptors
Escape mutations in HIV-1 cytotoxic T cell (CTL) epitopes can abrogate recognition by the TCR of HIV-1-specific CD8+ T cells, but may also change interactions with alternative MHC class I receptors. Here, we show that mutational escape in three HLA-A11-, B8- and B7- restricted immunodominant HIV-1 CTL epitopes consistently enhances binding of the respective peptide/MHC class I complex to Immuno...
متن کاملPersistent HIV-1-specific CTL clonal expansion despite high viral burden post in utero HIV-1 infection.
To address the issue of clonal exhaustion in humans, we monitored HLA class I-restricted, epitope-specific CTL responses in an in utero HIV-1-infected infant from 3 mo through 5 years of age. Serial functional CTL precursor assays demonstrated persistent, vigorous, and broadly directed HIV-1 specific CTL activity with a dominant response against an epitope in HIV-1 Gag-p17 (SLYNTVATL, aa 77-85)...
متن کاملKinetics of antiviral activity by human immunodeficiency virus type 1-specific cytotoxic T lymphocytes (CTL) and rapid selection of CTL escape virus in vitro.
The antiviral activity of a CD8(+) cytotoxic T-lymphocyte (CTL) clone (TCC108) directed against a newly identified HLA-B14-restricted epitope, human immunodeficiency virus type 1 (HIV-1) Rev(67-75) SAEPVPLQL, was analyzed with respect to its kinetics of target cell lysis and inhibition of HIV-1 production. Addition of TCC108 cells or CD8(+) reverse transcriptase-specific CTLs to HLA-matched CD4...
متن کاملFunctional and Molecular Characterization of C91S Mutation in the Second Epidermal Growth Factor-like Domain of Factor VII
Background: Coagulation Factor VII is a vitamin K-dependent serine protease which has a pivotal role in the initiation of the coagulation cascade. The congenital Factor VII deficiency is a recessive hemorrhagic disorder that occurs due to mutations of F7 gene. In the present study C91S (p.C91S) substitution was detected in a patient with FVII deficiency. This mutation has not b...
متن کاملA Common Inhibitory Receptor for Major Histocompatibility Complex Class I Molecules on Human Lymphoid and Myelomonocytic Cells
Natural killer (NK) cell-mediated lysis is negatively regulated by killer cell inhibitory receptors specific for major histocompatibility complex (MHC) class I molecules. In this study, we characterize a novel inhibitory MHC class I receptor of the immunoglobulin-superfamily, expressed not only by subsets of NK and T cells, but also by B cells, monocytes, macrophages, and dendritic cells. This ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 204 شماره
صفحات -
تاریخ انتشار 2007